Combinatorics CheatSheet

Overview

Teaching: min
Exercises: min
Questions
Objectives

Basics of generating functions

Ordinary generating functions

<!-- -->
<!-- -->
<!-- -->
  1. Using Rule 5, prove that \(F_0+F_1+\dots+F_n=F_{n+2}-1\) for \(n\ge 0\) [Wilf 38, example 6].\

  2. Solve \(g_n=g_{n-1}+g_{n-2}\) for \(n\ge 2\), \(g_0 = 0\), \(g_{10} = 10\).\

  3. Solve \(a_n = \sum_{k=0}^{n-1}a_k\) for \(n > 0\); \(a_0 = 1\). [R16]\

  4. Solve \(f_n=2f_{n-1}+f_{n-2}+f_{n-3}+\dots+f_1+1\) for \(n\ge 1\), \(f_0 = 0\) [Knuth 349/(7.41)]\

  5. Solve \(g_n = g_{n-1} + 2g_{n-2}+\dots +ng_0\) for \(n> 0\), \(g_0 = 1\). [K7.7]\

  6. Solve \(g_n = \sum_{k=1}^{n-1} {g_k + g_{n-k} + k\over 2}\) for \(n\ge 2\), \(g_1 = 1\).

  7. Solve \(g_n=g_{n-1}+2g_{n-2}+(-1)^n\) for \(n\ge 2\), \(g_0 = g_1 = 1\). [Knuth 341, example 2]\

  8. Solve \(a_{n+2}=3a_{n+1}-2a_n+n+1\) for \(n\ge 0\); \(a_0 = a_1 = 1\). [R24]\

  9. Prove that \(\displaystyle \ln {1\over 1-x} = \sum_{n\ge 1} {1\over n} x^n\).

Skipping sequence elements, Catalan numbers

<!-- -->
\[= {1\over 3}\left[\left({3-\sqrt3 i\over 2}\right)^n+\left({3+\sqrt3 i\over 2}\right)^n\right] = 2\cdot 3^{\frac{n}{2}-1}\cos\left({\pi n\over 6}\right)\]
<!-- -->
  1. Assume that \(A(x)\overset{\text{ogf}}{\longleftrightarrow}(a_n)\). Express the generating function for \(\sum_{n\ge 0} a_{3n}x^n\) in terms of \(A(x)\).\

  2. Compute \(S_n=\sum_{n\ge 0} F_{3n}\cdot 10^{-n}\) (by plugging a suitable value into the generating function for \(F_{3n}\)).\

  3. Compute \(\sum_k {n\choose 4k}\).

  4. Compute \(\sum_k {6m\choose 3k+1}\).

  5. Evaluate \(S_n = \sum_{k=0}^n (-1)^k k^2\).

  6. Find ogf for \(H_n = 1 + 1/2 + 1/3 + \dots\).

  7. Find the number of ways of cutting a convex \(n\)-gon with labelled vertices into triangles.\

Snake Oil

The Snake Oil method [Wilf 118, chapter 4.3] – external method vs. internal manipulations within a sum.

  1. identify the free variable and give the name to the sum, e.g. \(f(n)\)

  2. let \(F(x) = \sum f(n)x^n\)

  3. interchange the order of summation; solve the inner sum in closed form

  4. find coefficients of \(F(x)\)

  1. Prove that \(\sum_k k{n\choose k} = n2^{n-1}\) via the snake oil method.

  2. Evaluate \(\displaystyle f(n)=\sum_k k^2{n\choose k}3^k\).\

  3. Find a closed form for \(\displaystyle \sum_{k\ge 0} {k\choose n-k}t^k\). [W4.11(a)]\

  4. Evaluate \(\displaystyle f(n)=\sum_k {n+k\choose 2k}2^{n-k}\), \(n\ge 0\). [Wilf 125, Example 4]\

  5. Evaluate \(\displaystyle f(n)=\sum_{k\le n/2} (-1)^k{n-k\choose k}y^{n-2k}\). [Wilf 122, Example 3]\

  6. Evaluate \(\displaystyle f(n)=\sum_{k} {2n+1\choose 2p+2k+1}{p+k\choose k}\). [W4.11(c)]\

  7. Try to prove that \(\sum_k {n\choose k}{2n\choose n+k}={3n\choose n}\) via the snake oil method in three different ways: consider the sum \(\sum_k {n\choose k}{m\choose r-k}\) and the free variable being one of \(n\), \(m\), \(r\).

Asymptotic estimates

Estimates of sums and products


1) Find explicit formulas for the following sequences:

1) \(a_{n+1} = 3a_n+2\) for \(n\ge 0\), \(a_0=0\)

Solution

\(3x/(1-x)(1-3x)\)
\(3^n-1\)

2. \(a_{n+1} = \alpha a_n + \beta\) for \(n\ge 0\), \(a_0=0\)

Solution

\(\beta x/(1-x)(1-\alpha x)\)
\({\alpha^n-1\over \alpha-1}\beta\)

3. \(a_{n+1} = a_n/3 +1\) for \(n\ge 0\), \(a_0=1\)

Solution

\({3/2\over 1-x}-{1/2\over 1-x/3}\)
\({3^{n+1}-1\over 2\cdot 3^n}\)

4. \(a_{n+2} = 2a_{n+1}-a_n\) for \(n\ge 0\), \(a_0=0\), \(a_1=1\)

Solution

\(x/(1-x)^2\)
\(n\)

5. \(a_{n+2} = 3a_{n+1}-2a_n+3\) for \(n>0\), \(a_0=1\), \(a_1=2\)

Solution

\({4\over 1-2x}-{3\over (1-x)^2}\)
\(2^{n+2}-3n-3\)

6. \(a_n = 2a_{n-1}-a_{n-2}+(-1)^n\) for \(n>1\), \(a_0=a_1=1\)

Solution

\({1/2\over (1-x)^2}-{1/4\over 1-x}+{1/4\over 1+x}\)
\({2n+3+(-1)^n\over 4}\)

7. \(a_n = 2a_{n-1}-n\cdot(-1)^n\) for \(n\ge 1\), \(a_0=0\)

Solution

\({x/9-2/9\over (1+x)^2}+{2/9\over 1-2x}\)
\({2^{n+1}-(3n+2)(-1)^n\over 9}\)

8. \(a_n = 3a_{n-1} + {n\choose 2}\) for \(n\ge 1\), \(a_0=2\)

Solution

\(\)
\(\dfrac{1}{8}(19\cdot 3^n-2n(n+2)-3)\)

9. \(a_n = 2a_{n-1}-a_{n-2}-2\) for \(n > 1\), \(a_0=a_{10}=0\)

Solution

\(n(a_1+1-n)\), so with \(a_{10}\), \(a_n=n(10-n)\)

10. \(a_n = 4(a_{n-1}-a_{n-2})+(-1)^n\) for \(n \ge 2\), \(a_0=1\), \(a_1=4\)

Solution

\(\begin{align*} {1+x+x^2\over (1+x)(1-2x)^2} &= {1\over 9}{1\over 1+x} +\left({-5\over 18}\right) {1\over 1-2x} + \left({7\over 6}\right){1\over (1-2x)^2} \end{align*}\)
\({1\over 9}(-1)^n-{5\over 18}\cdot 2^n+{7\over 6}(n+1)\cdot 2^n\)

11. \(a_n = -3a_{n-1}+a_{n-2}+3a_{n-3}\) for \(n\ge 3\), \(a_0=20\), \(a_1=-36\), \(a_2=60\)

Solution

\(\)
\(5(-3)^n+18(-1)^n-3\)

12. \(a_n = -3a_{n-1}+a_{n-2}+3a_{n-3}+128n\) for \(n\ge 3\), \(a_0=0\), \(a_1=0\), \(a_2=0\)

Solution

\(\)
\(8n^2+28n-29-11(-3)^n+40(-1)^n\)

Key Points